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Abstract: The paper is focused on the numerical simulation of the compressible gas flow through the fences
and the porous media. We assume the non-stationary viscous compressible fluid flow, described by the RANS
equations. In order to simulate the flow through the porous media we modify the source term, achieving the
characteristic loss of momentum. For the simulation of the thin fence it is possible to use the modification of
the face flux. The original approach was presented recently by the authors, analysing the modification of the
Riemann problem with one-side initial condition, complemented with the Darcy’s law and added inertial loss.
Here we are also interested in the estimate of forces acting on the diffusible barrier (fence) with given param-
eters. The presented examples were obtained with the own-developed code for the solution of the compressible
gas flow.
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1. Introduction

The physical theory of the compressible fluid motion is based on the principles of conservation laws of
mass, momentum, and energy. The mathematical equations describing these fundamental conservation laws
form a system of partial differential equations (the Euler equations, the Navier-Stokes equations, the Navier
Stokes equations with turbulent models). We choose the well-known finite volume method to discretize the
analytical problem, represented by the system of the equations in generalized (integral) form. To apply this
method we split the area of the interest into the elements, and we construct a piecewise constant solution
in time. The crucial problem of this method lies in the evaluation of the so-called fluxes through the
edges/faces of the particular elements. In order to discretize such fluxes for the simulation of the diffusible
barrier we have shown the modification of the Riemann problem, see Kyncl and Pelant (2013, 2017). Here
we present other simple method for the construction of the flux through such faces, shown also in Kyncl
and Pelant (2018). This method was implemented into own computational code, and used in the numerical
examples.

2. Formulation of the Equations

The system of conservation laws can be written in the following vector form

∂w

∂t
+

3∑

s=1

∂f s(w)

∂xs
=

3∑

s=1

∂IRs(w,∇w)

∂xs
+ S(w) in QT = Ω× (0, T ). (1)

Here w = w(x, t) is the state vector, x ∈ Ω, t denotes the time, QT is the space-time cylinder, f s are the
inviscid fluxes, IRs are the viscous fluxes, S is the source-term vector. Further we use the equation of state
of ideal gas, and the turbulent model equations.
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The simple porous media can be simulated via the new source term, written as
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(2)

Here α is the permeability coefficient, Co is the pressure gradient coefficient. For the simulation of the
thin fence with small viscous effect we choose large value of the coefficient α = 1e7, which leads to
negligible viscous term µ

α . Based on the work REYNOLDS (1969) we may estimate the parameter C0

based on the fence porosity as 0.01 C0 = kr = 0.52(1 − η2)/η2. Here η is the porosity parameter of the
barrier. For the 30% barrier we choose η = 0.3. For the barriers 15%,30%,42%,50%,70% we may estimate
C0 = 2300, 525, 250, 150, 55.

3. Numerical method

For the discretization of the system we proceed as described in Kyncl and Pelant (2017). We use either
explicit or implicit finite volume method (FVM) to solve the systems sequentionally. The polyhedral ap-
proximation of Ω is divided into set of closed polyhedrons with mutually disjoint interiors Di called finite
volumes. For two neighboring elements Di, Dj we set Γij = ∂Di ∩ ∂Dj = Γji. By nij let us denote the
unit outer normal to ∂Di on Γij . Let us construct a partition 0 = t0 < t1 < . . . of the time interval [0, T ]
and denote the time steps τk = tk+1 − tk. We integrate the system (1) over the set Di × (tk, tk+1), and we
use the Green’s theorem.

∫

Di

(w(x, tk+1)−w(x, tk)) dx+

∫ tk+1

tk

∑

Γij∈ΓDi

∫

Γij

3∑

s=1

(fs(w)− IRs(w,∇w)) (nij)s dS dt = 0 (3)

We define a finite volume approximate solution of the system studied (1) as a piecewise constant vector-
valued functions. By wk

i we denote the value (constant) of the approximate solution onDi at time tk. Using
the Riemann problem for the split Euler equations it is possible to approximate the state vector w at the
center of the edge Γij at the time instant tl, denoting as wl

Γij
. The inviscid face flux can be approximated

as ∫

Γij

3∑

s=1

f s(w(x, tl))(nij)s dS ≈ |Γij |
3∑

s=1

f s(w
l
Γij

)(nij)s. (4)

For the approximation of the fluxes through the boundary faces see Kyncl (2011). Now it is possible to
approximate the system (3) by the following explicit finite volume scheme
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(
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k
Γij
,∇wk

Γij
)(nij)s

)
= 0. (5)

The implicit scheme was shown in Kyncl and Pelant (2017). With this finite volume formula one computes
the values of the approximate solution at the time instant tk+1, using the values from the time instant tk,
and by evaluating the values wk

Γij
at the faces Γij . In order to achieve the stability of the used method, the

time step τk must be restricted by the so-called CFL condition, see M. Feistauer (J. Felcman). The crucial
problem of this discretization lies with the evaluation of the edge values wk

Γij
and faces fluxes.

3.1. Flux through the fence, discretization

Simpliest way to include the porous media within the FVM is to choose the elements (porous area), where
the source term (2) is applied. At the face Γij simulating the diffusible barrier (fence) we may use the
modification of the face flux (4) as

∫

Γij

3∑

s=1

f s(w(x, tl))(nij)s dS ≈ |Γij |
3∑

s=1

f s(w
l
Γij

)(nij)s + |Γij |
d

2
SPM |Γij

. (6)
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Here |Γij |d2 is the volume of the non-existing (artifitial) element adjacent to the face, representing the
diffusible barrier (fence) with diameter d, and SPM |Γij

= SPM (%Γij
,vΓij

), where %Γij
, vΓij

are the ap-
proximated values of density and velocity vector at the face at time instant tl.

4. Estimation of the force acting on the barrier

In our recent research we studied the damping effect of the barrier. The numerical and wind tunel experi-
ments were made to simulate the flow behind the barrier near the ground with logarithmic distribution of
incident velocity. The aim was to slow down the wind speed using the fences, and to estimate the acting
forces. Here we present the acting force estimate based on the following simple example. Let us suppose
the gas flow with the total temperature θ0 = 293.15K, total pressure p0 = 101325 Pa, and given velocity
magnitude u∞ (freestream values). Let us assume the 50% fence composed of the set of verically placed
rigid plates, totalling the height of 10cm. Our aim is to compute/ estimate the force acting on such fence.
The simulations were made for the fence composed of 9,26,51, and 101 plates, denoting as D9,D26,D51,
and D101. The k − ω (Kok) turbulence model was used. The flow behind such barriers is highly non-
stationary, and the resulting acting force is varying. This variance is shown in figure 1. Based on the these

velocity regime u∞

force Fx(u∞)
barrier D26, u∞ = 30m/s

velocity

pressure

force Fx in time

Fig. 1: Numerical simulations of turbulent flow, k-ω (Kok) turbulence model. Left: velocity and pressure
field behind the D26 barrier, u∞ = 30m/s, force acting on the barrier in time. Right: variation of the force
Fx acting on the barrier depending on the regime velocity u∞, barriers D9, D26, D51, and D101, h=10cm,
the average force Fx(u∞) values were fitted with the quadratic curves.

CFD simulations, it is possible to use rough approximation of the force acting on the barrier as

Fx =

∫

S
Ku2

∞ dS. (7)

To be more precise, the fluid density should be also included, as shown in Kyncl and Pelant (2018). The
estimated value of the coefficient K for the considered 50% barriers lyes in the range of 0.57-0.71.

Further we simulate the flow through the fences with the use of porous media sources, setting the parameter
C0 = 2300, 525, 250, 150, 55. The resulting force is then computed by integration of the source term SPM
at the barrier. The Figure 2 shows that the computed force can be also approximated by quadratic curve
(7). The estimated values for the force coefficients K of the considered permeable barriers are shown in
table 1. This approach has lower computational requirements than the simulation of the fence composed of
particular plates, and yields almost stationary field behind the barrier.
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porous media C0 = 250, u∞ = 30m/s

velocity

pressure

Fx = 51.85N

force Fx(u∞)

velocity regime u∞

Fig. 2: Porous media simulation. Left: velocity and pressure field behind theC0 = 250 barrier, u∞ = 30m/s
Right: force Fx acting on the barrier depending on the regime velocity u∞, barriers 50%,42%,30%,15%
(from top left), the computed values are fitted with the quadratic curves.

BARRIER 15% 30% 42% 50% C200A5e-9 C100A1e-8 C50A5e-8
C0 2300 525 250 150 200 100 50
K 0.784316 0.667824 0.57244 0.473028 0.646404 0.51678 0.284178

Tab. 1: Coefficients for the quadratic estimation of the force (7) acting on the barrier (fence) with given
parameters.

5. Conclusion

This paper is focused on the numerical simulation of the viscous compressible gas flow. The FVM dis-
cretization of the equations describing the flow through the porous media was shown, together with the
simple estimate of the force acting on the fence. All codes were implemented into own-developed software.
The presented examples show that the used simplifications cannot fully describe the complexity of the real
non-stationary flow through the porous media, yet it may be used to approximate the dumping effect of such
barrier.
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